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Toll-like receptor 2 (TLR2) antagonists are key therapeutic targets because

they inhibit several inflammatory diseases caused by surplus TLR2 activa-

tion. In this study, we identified two novel nonpeptide TLR2 antagonists,

C11 and C13, through pharmacophore-based virtual screening. At 10 lM,
the level of interleukin (IL)-8 inhibition by C13 and C11 in human embry-

onic kidney TLR2 overexpressing cells was comparable to the commer-

cially available TLR2 inhibitor CU-CPT22. In addition, C11 and C13

acted in mouse macrophage-like RAW 264.7 cells as TLR2-specific inhibi-

tors and did not suppress the tumor necrosis factor-a induction by TLR3

and TLR4 activators. Moreover, the two identified compounds bound

directly to the human recombinant TLR2 ectodomain, during surface

plasmon resonance analysis, and did not affect cell viability in a 3-

(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-

tetrazolium assay. In total, two virtually screened molecules, C11 and C13,

were experimentally proven to be effective as TLR2 antagonists, and thus

will provide new insights into the structure of TLR2 antagonists, and pave

the way for the development of TLR2-targeted drug molecules.

Introduction

Toll-like receptors (TLRs) act as the first line of host

defense, by sensing a wide range of conserved micro-

bial molecules called pathogen-associated molecular

patterns [1]. In contrast, excessive TLR stimulation

can lead to several immune-related diseases [2]. Verte-

brate TLRs, located in the plasma membrane or on

endosomes, are evolutionarily classified into six sub-

families: TLR1/2/6/10, TLR3, TLR4, TLR5, TLR7/8/

9 and TLR11/12/13/21/22/23 [3]. The members of each

subfamily recognize a specific type of ligand and form

homo- or heterodimers to activate the downstream sig-

nal transduction cascades [4]. A few studies have

reported that certain TLRs are species-specific, but

sense the same type of ligand [5,6]. TLRs are type I

transmembrane proteins that contain three types of

domains: an N-terminal ligand-binding ectodomain

(ECD) composed of leucine-rich repeats (LRRs), a

transmembrane helix domain, and a Toll/interleukin
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(IL)-1 receptor (TIR) homology domain, which initiates

TLR signaling and results in the production of proin-

flammatory cytokines and type I interferons [7,8]. To

date, crystal structures have been determined for the

agonist-bound ECDs of TLRs 1, 2, 4 and 8 (human);

TLRs 2, 3, 6 and 13 (mouse); and TLR5 (zebrafish) [9–
12]. With regard to the crystal structure of the antago-

nist-bound TLR ECD and molecular dynamics (MD)-2,

staphylococcal superantigen-like protein 3-TLR2

(mouse), Eritoran–TLR4–MD-2 (human), lipid IVa–
MD-2 (human) and TLR9-inhibitory DNA4084 (horse)

complexes have been solved [9,13,14].

Members of the TLR2 subfamily reside in the

plasma membrane and bind primarily to bacterial, fun-

gal and viral substances. The main TLR2 ligands are

lipopeptides, peptidoglycans, lipoteichoic acids,

lipoarabinomannans, the phosphatidylethanolamine-

diethylene triamine pentaacetic acid, phenol-soluble

modulins, glycosylphosphatidylinositols and zymosan

[4,15–17]. In the TLR2 subfamily, the crystal struc-

tures of dimeric TLR2–TLR1 with triacyl lipopeptide,

Pam3CSK4 and dimeric TLR2–TLR6 with diacyl

lipopeptide Pam2CSK4 have been described [18,19].

The results of our recent protein–ligand molecular

docking study suggested that triacyl lipopeptides may

be the ligands for TLR2–TLR10, and diacyl lipopep-

tides may activate TLR10–TLR1 and TLR10–TLR10

complexes [20]. Another study experimentally con-

firmed the hypothesis that TLR2–TLR10 recognizes

triacyl lipopeptides [21]. Structural studies have shown

that ligand-induced dimerization of the ECDs of

TLR2 subfamily members leads to the dimerization of

their TIR domains and the initiation of downstream

signaling [7]. TLR2 signaling starts with the recruit-

ment of the TIR-domain-containing adaptor molecule,

myeloid differentiation primary-response protein 88

(MyD88), which regulates the canonical pathway [8].

Subsequently, molecules such as IL-1-receptor-

associated kinase family members [22], tumor necrosis

factor (TNF) receptor-associated factor 6 and trans-

forming growth factor b-activated kinase 1 activate the

IjB kinase complex. This complex activates nuclear

factor-jB to initiate the transcription of inflammatory

genes [23]. As in other TLRs, the ECDs of TLR2 sub-

family members contain LRRs of 19–33 residues [7].

However, similar to TLR4, the ECDs of TLR2 sub-

family members can be divided into three subdomains:

N-terminal, central and C-terminal [7]. TLR2 subfam-

ily members occur as monomers, but after ligand bind-

ing, TLR2 binds with TLR1 or TLR6, to activate the

signaling cascade [7]. In the TLR2–TLR1–Pam3CSK4

crystal structure [Protein Data Bank (PDB) ID:

2Z7X], LRRs 9–12, in the convex regions of both

TLR2 and TLR1, are the binding region for triacyl

lipopeptide agonists [18].

Accumulating evidence suggests that TLR2 antago-

nists act against ischemia, atopic dermatitis and

atherosclerosis [15,24,25]. Hence, there is a need for

therapeutically appropriate ligands to block TLR2 sig-

naling, and there is a growing interest in the develop-

ment of drug-like nonpeptide TLR2 antagonists with

increased efficacy. Here, we present a receptor–ligand-
based and ligand-based virtual screening (VS)

approach, based on structural insights from the crystal

structure of 2Z7X and a recent high-throughput

screening study of TLR2 synthetic small-molecule ago-

nists [18,26]. The major benefit of pharmacophore-

based VS is its capacity to identify active compounds

with different chemical structures that bind to the

same target [27]. In addition, VS is economical and

time-efficient [28]. Approximately seven million mole-

cules in our in-house virtual library were screened in

this study, and the initial hits were filtered to select

drug-like molecules. Furthermore, the predicted bind-

ing modes of the compounds were investigated using

molecular docking and MD simulations, combined

with binding free energy calculations. Sixteen selected

molecules were evaluated for their direct binding to

human recombinant TLR2, using surface plasmon res-

onance (SPR) assay. Further, we tested the ability of

these molecules to inhibit the synthesis and secretion

of IL-8 in human embryonic kidney cells overexpress-

ing TLR2 (HEK293-hTLR2) stimulated with the

TLR2 agonist Pam3CSK4. We ultimately chose the

two molecules (C11 and C13) that displayed sufficient

direct binding to TLR2 ECD and significantly reduced

Pam3CSK4-induced IL-8 production. Interestingly,

C11 and C13 also reduced the TNF-a secretion acti-

vated by Pam3CSK4 in RAW 264.7 cells. Moreover,

the antagonists presented here were proven to be non-

cytotoxic in cell viability assays and may possess posi-

tive pharmacological properties, because of their low

molecular mass (< 500 Da). They also are nonpeptides

that are distinct from several known TLR2 inhibitors

with fatty acid chains [29]. Thus, these antagonists will

be important in the rational design of novel drugs

appropriate for the treatment of various TLR2-related

inflammatory diseases.

Results

In silico alanine scanning mutagenesis and

pharmacophore models

The availability of high-resolution crystal structures

for TLR2–TLR1–Pam3CSK4 and of a high-throughput
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library of derived agonists provides an excellent

opportunity to identify potent TLR2 antagonists

using VS. The complete pharmacophore-based VS

workflow is shown in Fig. 1. By using Pam3CSK4 as

the reference ligand, the residues in the Pam3CSK4

binding site of 2Z7X were mutated to alanine, and

the mutation energy was calculated based on the dif-

ference in the binding free energies of mutated and

wild-type protein structures (Fig. 2). Residues with

mutation energies > 0.5 kcal�mol�1 are considered

destabilizing, and thereby influence the binding affin-

ity of protein–ligand complexes. The values for all

residues for which mutation energy was calculated are

shown in Table 1.

To generate the receptor–ligand-based pharma-

cophore model, we used the 2Z7X protein–lipopeptide
complex (Fig. 3A) to identify ligand features that facil-

itate the interactions with the protein; some of these

features were also expected to be relevant small non-

peptide molecules [30]. All of the pharmacophore fea-

tures based on the TLR2–TLR1–Pam3CSK4

interactions were created first (Fig. 3B). These features

were then edited to build a pharmacophore model with

the following five features, which are located near key

residues, as shown in Fig. 3C,D: two hydrogen bond

acceptors (HBAs), one hydrogen bond donor (HBD)

and two hydrophobic features (HYDs). The significant

pharmacophore features in the model were situated in

the active site, near the Phe325 and Phe349 residues of

TLR2 and the Gln316 residue of TLR1. The impor-

tance of these three residues has been established

experimentally [18,26,31].

Next, ligand-based models were developed with

compounds A, B and C (Fig. 4A), because they were

the known nonpeptide TLR2 modulators [26].

Although these compounds are TLR2 activators, in

Fig. 1. Workflow of the current study. Steps followed to identify nonpeptide TLR2 antagonists.
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this study they provided the molecule C13, with minor

structural differences, which effectively inhibited TLR2

signaling. Compounds A and B were used to generate

the ligand-based models 1 and 2, respectively. Of the

10 pharmacophore models (ranked from 1 to 10) gen-

erated with various features from compound A, we

chose the first ranking output model with three HBAs

and two HYDs for ligand-based model 1, which was

more likely to map to active molecules (Fig. 4B). For

ligand-based model 2 (Fig. 4C), the third ranking out-

put model was selected because its features (one HBD,

two HBAs and two HYDs) in compound B were also

present in compound C. Due to structural similarities

between compounds B and C, compound C mapped

to all five pharmacophore features that were obtained

from compound B, in ligand-based model 2. The final

selected TLR2 antagonists, C11 and C13, mapped in

their respective pharmacophore models, are given in

Fig. 5.

Database similarity search and selection of drug-

like compounds

The receptor–ligand-based model was used to screen

our in-house virtual library. The top 2000 molecules

that mapped to any of the four pharmacophore features

(out of five) were retrieved based on the fit value. The fit

value in DISCOVERY STUDIO (DS 4.0; Accelrys Software

Inc., San Diego, CA, USA) is calculated from a measure

of how good the ligand fits the pharmacophore model.

For the ligand-based model search, hits were obtained

from both of the ligand-based models, and subjected to

shape and atom type similarity matching using the pro-

gram OPENEYE ROCS (Santa Fe, NM, USA) [32]. Com-

pound A was used as a query, and the best 500 similar

molecules were filtered from the 2 312 604 ligand-based

model 1 hits. Compound B was used as an input to

screen the 1 651 005 ligand-based model 2 hits, and the

500 molecules most similar to compound B were chosen.

The 1 651 005 hits obtained through ligand-based

model 2 were filtered again by using compound C as a

query, and the 500 molecules that closely resemble com-

pound C were retrieved.

The calculation of drug-like properties for the candi-

date compounds can help avoid the synthesis of unfa-

vorable compounds during the later stages of drug

development [33]. The 3500 hit molecules (2000 from

the receptor–ligand-based model and 1500 from the

ligand-based models) were tested for these properties,

with filters such as the Lipinski [34] and Veber [35]

rules and absorption, distribution, metabolism, excre-

tion and toxicity (ADMET) [33]. The Lipinski and

Veber rules were used to screen for compounds with

better oral bioavailability. In addition, calculation of

the ADMET descriptors identified the molecules with

good absorption, optimal solubility, low blood–brain
barrier penetrability, cytochrome P450 2D6 noninhibi-

tion, nonhepatotoxic properties and nonplasma pro-

tein-binding properties. After discarding inappropriate

compounds, we selected 1126 drug-like compounds for

further screening.

Molecular docking and scoring

In computer-aided drug design, the molecular docking

of hit molecules into a target protein is an effective

means of identifying leads [36]. In this study, molecular

docking was performed with two programs, CDOCKER

(CD) [37] and AUTODOCK (AD) Vina [38], to prefilter and

select the best docking poses. To isolate the top com-

pounds, we used CD to dock the 1126 drug-like hits into

the Pam3CSK4 binding site shown in Fig. 3A. The 100

poses with the most negative CD interaction energy

Fig. 2. TLR2–TLR1 residues subjected to computational mutation

binding energy calculations. Sequence alignment of the active site

in human TLR2 and TLR1, based on structure. Details of the

residues that bind Pam3CSK4 in the 2Z7X crystal structure, and the

results obtained from computational alanine scanning are given.

Residues with mutation energies > 0.5 kcal�mol�1 were considered

destabilizing.
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were redocked with AD Vina. Although 34 binding sites

were available in this crystal structure, the cavity size of

TLR2 (~ 1600 �A3) and TLR1 (~ 400 �A3) in the triacyl

lipopeptide site highly favored ligand interactions with

both TLR2 and TLR1 [18]. Moreover, our target was to

obtain compounds that compete with agonists and bind

to the residues that agonists interact with. Hence, we

used the dimeric TLR2–TLR1 structure for molecular

docking. The best 18 poses of 16 molecules were selected

based on ligand interactions with experimentally

established key residues and listed with their AD bind-

ing energy and CD interaction energy in Table 2. The

molecular docking results for the final two molecules,

C11 and C13, are shown in Fig. 6.

Interaction energy calculations to rescore

docking complexes

The interaction energy provides insights into the

driving forces of protein–ligand interactions.

Table 1. In silico mutation energy calculations. Values of TLR2–TLR1 residues, subjected to computational alanine scanning.

Mutation to alanine Mutation energy (kcal�mol�1) Van der Waals term Electrostatic term Entropy term Nonpolar term

Leu324 1.53 3.68 �0.11 �0.32 0

Lys347 1.27 4.41 �0.62 �0.78 0

Ile314 1.23 1.83 �0.29 0.57 0

Phe284 1.21 1.15 0.28 0.62 0

Leu266 1.17 1.64 �0.06 0.48 0

Tyr320* 1.17 1.26 0.44 0.4 0

Ile341 1.15 1.84 �0.08 0.34 0

Leu355 1.15 1.65 �0.03 0.42 0

Asp327 1.13 2.54 0.14 �0.26 0

Val339* 1.13 2.18 �0.1 0.11 0

Phe295 1.05 1.49 0.06 0.34 0

Val343 1.02 1.84 0.08 0.08 0

Pro352 0.98 1.48 0.3 0.11 0

Leu334 0.96 1.54 0.02 0.23 0

Val351 0.83 1.37 0.1 0.12 0

Ile319 0.81 1.28 0.19 0.09 0

Leu317 0.79 1.01 0.11 0.29 0

Leu282 0.75 1.18 0.2 0.07 0

Val311* 0.72 2.21 �0.06 �0.44 0

Val348 0.7 1.23 0.13 0.02 0

Phe312* 0.63 0.47 �0.04 0.52 0

Val309 0.56 0.91 0.01 0.13 0

Val338 0.49 0.93 �0.02 0.04 0

Asn294 0.37 1.07 0.22 �0.34 0

Trp258* 0.36 0.13 0.15 0.27 0

Met270 0.33 0.61 �0.18 0.14 0

Leu289 0.31 0.6 �0.13 0.09 0

Pro315* 0.28 0.5 0.09 �0.02 0

Phe323* 0.24 0.03 �0.01 0.29 0

Ile319* 0.16 0.06 0.07 0.12 0

Phe314* 0.14 0.1 0.17 0.01 0

Tyr318* 0.13 0.2 �0.11 0.1 0

Ile304* 0.1 0.01 0.03 0.1 0

Phe261* 0.08 0.01 �0.04 0.12 0

Ile322* 0.01 0.02 0.01 0 0

Val333* 0.01 0.02 �0.04 0.02 0

Leu265* 0.01 0 0.01 0 0

Ser346 0.01 �0.07 0.09 0 0

Val307* �0.04 0.01 �0.21 0.07 0

Leu283* �0.07 �0.01 �0.17 0.02 0

Gly313* �0.07 �0.27 �0.06 0.12 0

Met338* �0.13 0.08 �0.38 0.03 0

Thr336* �0.27 0.08 �0.64 0.01 0

Asterisks represent TLR1 residues.
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Therefore, 1 ns MD simulations were carried out

for the 18 docking complexes identified above and

were reordered according to molecular mechanics/

Poisson–Boltzmann surface area (MM/PBSA) bind-

ing free energy calculations. They were calculated

with 50 snapshots obtained at 20-ps intervals

throughout a 1-ns MD simulation. The average

binding energy scores were calculated for the 18

complexes from several energy components and are

listed in Table 2. The TLR2–TLR1–Pam3CSK4

complex was included as a control. The values of

the various energy components that compose bind-

ing free energy are helpful for understanding the

complex binding process.

In vitro binding of virtual hits

The computationally predicted 16 compounds given in

Table 2 were purchased for in vitro testing from Chem-

Bridge (San Diego, CA, USA), Enamine (Kyiv,

Ukraine) and VitasM (Champaign, IL, USA). To vali-

date the binding of virtual hits with TLR2 and TLR1,

SPR analysis on a ProteOn GLH sensor chip was per-

formed with 200 and 100 lM of molecules and the

results indicated the substantial direct binding of the

molecules C1, C7, C11, C13 and C16 to TLR2, and

C11, C13 and C16 to TLR1 (Table 3). The molecules

(C1, C7, C11, C13, C14, C15 and C16) selected in the

primary screening experiments, including SPR, were

Fig. 3. Receptor–ligand-based pharmacophore model. (A) Crystal structure of TLR2–TLR1–Pam3CSK4 (PDB ID: 2Z7X). (B) All

pharmacophore features generated from Pam3CSK4 bound to TLR2–TLR1. (C) The five selected pharmacophore features for the

receptor–ligand-based model and the residues around the features are labeled. Asterisks indicate TLR1 residues. The green, magenta and

cyan spheres indicate HBA, HBD and HYD, respectively. The gray exclusion spheres indicate the spaces used by the proteins. (D)

Receptor–ligand-based pharmacophore model, showing only features and geometric constraints. The distances between two features are

given in angstroms (�A).

2269The FEBS Journal 284 (2017) 2264–2283 ª 2017 Federation of European Biochemical Societies

P. Durai et al. Computational identification of TLR2 antagonists

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=2Z7X


further tested on a ProteOn GLH sensor chip with sev-

eral concentrations (0, 50, 100, 200 and 400 lM), and
their dose-dependent binding signals [in response units

(RU)] are given in Table 4. To validate SPR analysis,

the experiment was performed for CU-CPT22 for the

same concentrations used for the identified compounds

(Table 4). The final compounds C11 and C13 bound to

TLR2 with KD values of 8.7 9 10�4 and

3.72 9 10�3
M, respectively (Table 5) and to TLR1 with

KD values of 4.43 9 10�4 and 1.04 9 10�3
M, respec-

tively (Table 5). The sensogram curves and graphical

representations of the dose-dependent analysis results

for the compounds C11 and C13 are given with their 2D

structures in Fig. 7. Next, we examined the direct inter-

action of CU-CPT22, C11 or C13 and TLR2, TLR4–
MD2 complex or TLR3 using SPR analysis on a Pro-

teOn GLM sensor chip. The sensograms and 2D struc-

tures of the molecules are shown in Fig. 8. The

concentrations used were 0, 5, 10, 25, 50 and 100 lM,
and the RUs are presented in Table 6. CU-CPT22, C11

and C13 bound to TLR2 better than TLR4–MD2 and

TLR3 (Fig. 8A). The KD values of CU-CPT22, C13 and

C11 when they bound to TLR2 were 1.28 9 10�5,

1.94 9 10�4 and 1.51 9 10�3
M (Table 7). The binding

patterns of CU-CPT22, C11 and C13 in the GLM chip

were same as with the GLH chip.

Fig. 4. Ligand-based pharmacophore models with their geometric constraints. (A) Compounds used to generate ligand-based

pharmacophore models. (B) Ligand-based model 1, generated with compound A. (C) Ligand-based model 2, generated with compound B,

which has pharmacophore features that also mapped well with compound C.

Fig. 5. Identified compounds, mapped in their respective pharmacophore models. (A) C13 mapped in ligand-based model 2. (B) C11

mapping features in receptor–ligand-based pharmacophore model.
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Cytokine and cell viability assays

To assess the antagonistic activity of the 16 compounds

on TLR2, HEK293-hTLR2 cells were first incubated

with the compounds (at 1 and 5 lM) for 1 h, followed

by treatment with 50 nM of Pam3CSK4. After 24 h, IL-8

levels in the cell culture supernatant were quantified

using ELISA. The results showed that a few molecules,

including C11 and C13, that earlier displayed effective

binding in SPR analysis, significantly reduced the

Pam3CSK4-triggered IL-8 production, as shown in

Fig. 9. We considered the results from the above

experiments, and only seven molecules (C1, C7, C11,

C12, C13, C14 and C16) were selected for further dose-

dependent analyses. We tested these seven selected

molecules (at the concentrations of 1, 5 and 10 lM), in
addition to 10 lM of CU-CPT22, a known TLR2–
TLR1 antagonist (Fig. 10A). Compared with the lower

concentrations, all the seven compounds highly reduced

IL-8 secretion at 10 lM. In particular, C13 and C11 led

to the greatest reduction in the production of IL-8. To

determine if the seven chosen compounds had cytotoxic

properties, we performed a 3-(4,5-dimethylthiazol-2-yl)-

5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tet-

razolium (MTS) assay in HEK293-hTLR2 cells. As

shown in Fig. 10B, the MTS assay confirmed that

none of the compounds caused cellular cytotoxicity,

at any of the concentrations (1, 5 and 10 lM) tested.

Further, when we tested CU-CPT22, C11 and C13

in both HEK293-hTLR2 and HEK293-Null cells,

10 lM of the three molecules reduced Pam3CSK4-

induced IL-8 secretion only in HEK293-hTLR2 cells

(Fig. 11A). As expected, HEK293-Null cells did not

express TLR2 and thereby no Pam3CSK4-induced IL-

8 production in these cells. The TLRs and species

specificities of C11 and C13 were further verified

in vitro. Mouse macrophage-like RAW 264.7 cells

were treated with CU-CPT22 or C11 or C13 in com-

bination with a few TLR agonists, and the resulting

TNF-a level was measured (Fig. 11B). Interestingly,

CU-CPT22, C11 and C13 significantly repressed only

Pam3CSK4-induced TLR2–TLR1 activated TNF-a
production. In other words, CU-CPT22, C11 and

C13 were not seem to inhibit TNF-a when cells were

treated with Poly (I : C) (TLR3) or lipopolysaccha-

ride (LPS; TLR4), the other TLR activators

(Fig. 11B). C13 can also slightly inhibit TLR2–TLR6

heterodimer; however, this inhibition should be better

explored in future studies. These results exhibit that

C11 and C13 are specific inhibitors of TLR2 and not

TLR3 or TLR4.

Table 2. Computational binding values of the virtual hits. The energy values calculated to obtain the MM/PBSA binding energy, CD

interaction energy and the AD binding energy of all 18 docking complexes, chosen after visual inspection. The structure of 2Z7X complexed

with Pam3CSK4 was added as a control.

Compound

name

Van der

Waals energy

(kJ�mol–1)

Electrostatic

energy

(kJ�mol–1)

Polar

solvation

energy

(kJ�mol–1)

SASA

energy

(kJ�mol–1)

SAV

energy

(kJ�mol–1)

WCA

energy

(kJ�mol–1)

MM/PBSA

binding energy

(kJ�mol–1)

AD binding

energy

(kcal�mol–1)

CD interaction

energy

(kcal�mol–1)

C7 �229.142 �903.310 245.344 �24.879 �268.883 83.874 �1096.996 �11.622 �58.9132

C15 �245.747 �811.725 227.765 �24.287 �249.815 86.074 �1017.736 �11.13 �63.5574

C3 �141.993 �984.124 281.512 �20.085 �215.393 69.732 �1010.352 �8.296 �58.0539

C16 �246.337 �781.112 224.124 �24.547 �265.807 89.533 �1004.145 �9.427 �63.244

C13 �186.422 �841.548 219.218 �20.341 �215.359 69.897 �974.554 �8.357 �58.0981

C8 �143.428 �796.057 133.866 �16.771 �167.924 79.734 �910.581 9.894 64.4827

C2 �161.663 �718.391 169.642 �19.184 �208.633 67.879 �870.349 �8.485 �58.1906

C9 �28.261 �689.736 �47.112 �5.594 �66.314 61.890 �775.126 �9.325 �60.4863

C5 �32.318 �728.836 �17.082 �5.192 �46.689 68.736 �761.382 �10.088 �58.7772

C10 �30.821 �647.060 �16.111 �5.199 �101.245 64.670 �735.766 �8.379 �58.3077

C11 �155.492 �445.508 123.638 �17.954 �180.452 74.762 �601.006 �9.862 �58.2775

C11 �27.195 �397.705 �41.165 �6.468 �117.839 74.607 �515.766 �11.288 �58.1155

C4 �207.316 �144.311 120.990 �22.996 �246.643 75.405 �424.870 �8.741 �59.1087

C6 �38.280 �304.739 �46.897 �6.916 �99.760 85.727 �410.864 �10.002 �58.7992

C1 �223.114 �68.654 93.952 �24.302 �268.474 84.860 �405.733 �9.232 �59.2525

C7 �245.948 �43.055 100.432 �24.876 �258.714 83.121 �389.040 �10.5590 �60.0077

C14 �45.596 �47.185 �42.740 �8.114 �114.042 81.761 �175.916 �10.752 �58.8057

C12 �67.798 14.551 6.016 �9.804 �190.832 86.491 �161.374 �10.668 �60.6824

Pam3CSK4 �583.956 �623.005 374.013 �64.348 �681.373 281.650 �3297.019 * *

*Because the crystal structure was used, molecular docking was not performed for Pam3CSK4. SASA, solvent accessible surface area;

SAV, solvent accessible volume; WCA, Weeks-Chandler-Andersen theory.
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Discussion

An uncontrolled TLR2 response may lead to several

inflammatory and autoimmune diseases, and therefore

inhibitors that control TLR2 signaling are required

[39]. The currently known TLR2 modulators mainly

comprise lipopeptides that contain long fatty acyl

chains [29]. These high molecular mass molecules are

unsuitable as drugs. Likewise, the microbial compo-

nents that modulate TLR2 signaling are unsafe as

drugs, due to their toxic nature [40]. Hence, there is a

need for an effective drug-like compound that inhibits

TLR2 signaling. The development of analogs for exist-

ing high molecular mass structures may yield com-

pounds with poor pharmacokinetic properties. Thus,

to identify effective TLR2 antagonists, we can screen

chemical libraries with the receptor [15]. In addition,

we can look for molecules that are structurally similar

to known TLR nonpeptide agonists, but with the

opposite activity. However, the identification of TLR2

small-molecule modulators through computational

methods is one of the most challenging tasks in drug

discovery, due to the expansive TLR2–TLR1/TLR6

interfaces. Nevertheless, in our previous studies, we

used the molecular docking approach for TLR2 sub-

family members, to successfully predict their high

molecular mass TLR2 agonists and their binding

modes [20,41]. In this study, we adopted a VS method

that integrates protein–ligand-based and ligand-based

pharmacophore approaches to identify TLR2 antago-

nists. Among the computationally predicted molecules,

C11 and C13 (Fig. 7A) were confirmed through SPR

biosensor analysis, IL-8 ELISA and cell viability

assays as novel, effective and nontoxic TLR2
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Fig. 6. Molecular docking results of identified TLR2 antagonists. The TLR2 and TLR1 residues are shown in blue and green, respectively.

The dark green dotted lines represent stronger hydrogen bonds, and the light green dotted lines represent weaker hydrogen bonds. The

hydrogen bond distances in angstroms are written next to the dotted lines. Asterisks indicate TLR1 residues. The green dashed arrow

shows the hydrogen bond interactions of the ligand with the main chains of amino acids. The orange line indicates the Pi interactions. (A)

C13. (B) C11.
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antagonists. We identified C13 using the ligand-based

model 2 obtained from compounds B and C. The

minor structural differences of C13 when compared

with compound B and compound C are as follows.

Compounds B and C are derivatives of thiourea, and

substituted by thiophene and benzene rings. However,

Table 3. SPR biosensor experiment of 16 virtual hits. Results from SPR analysis of the molecules, when tested for binding with TLR2 and

TLR1 at 200 and 100 lM. RUs of the compounds are given.

Compound

200 lM 100 lM

TLR2 TLR1 TLR2 TLR1

C1 19.79 7.15 6.56 3.9

C2 �7.58 �4.73 �9.53 9 10�1 3.73 9 10�1

C3 3.70 9 10�1 1.04 1.09 8.90 9 10�1

C4 1.58 4.59 �1.01 9.19 9 10�1

C5 �3.26 9 10�1 �1.86 �1.6 �1.8

C6 1.06 1.77 1 7.36 9 10�1

C7 23.96 �10.37 3.21 7.96 9 10�1

C8 �6.49 �3.86 �1.91 �1.97

C9 �15.42 �11.44 �5.36 �3.7

C10 �1.2 4.87 9 10�2 2.14 3.65 9 10�1

C11 43.84 11.68 10.25 4.19

C12 12.65 2.74 �6.39 9 10�1 �1.32

C13 33.53 15.16 9.87 7.55

C14 11.51 4.9 5.67 2.74

C15 3.77 3.3 1.03 1.09

C16 16.38 11.62 6.52 5.25

DMSO �3.1 �2.81 �3.57 �3.53

Table 4. Dose-dependent SPR analysis of the compounds selected during primary screening. RUs of the compounds are given.

Target

Dose

(lM) C1 C7 C11 C13 C14 C15 C16 CU-CPT22

TLR2 0 2.83 9 10�1 �7.74 9 10�2 �3.56 9 10�2 1.33 9 10�1 4.33 9 10�1 9.64 9 10�1 2.07 3.19

50 3.78 9.54 11.78 6.63 3.3 1.02 4 33.09

100 13.13 23.04 21.76 14.89 7.91 1.2 6.77 33.32

200 23.06 42.42 39.19 27.83 12.3 5.45 14.12 40.81

400 17.24 71.23 65.59 53.59 22.73 8.76 21.03 59.1

TLR1 0 6.12 9 10�1 1.43 9 10�1 �3.45 9 10�1 �5.97 9 10�1 2.51 9 10�1 1.22 2 14.83

50 7.15 9 10�1 �5.57 9 10�1 2.41 9 10�1 1.24 5.83 9 10�1 �0.456 �8.81 9 10�1 3.78

100 2.22 4.58 4.11 7.52 2.75 9.05 9 10�1 1.09 117.83

200 5.19 9.86 7.24 12.94 5.93 4.75 8.9 11.48

400 4.1 16.5 8.9 20.49 8.94 4.35 7.52 12.91

Table 5. SPR binding affinities of the compounds selected during primary screening. The association rate (Ka), dissociation rate (Kd) and

binding affinity constant (KD) of the compounds are given.

Compound

TLR2 TLR1

Ka (Ms�1) Kd (s�1) KD (M) Ka (Ms�1) Kd (s�1) KD (M)

C1 3.48 9 104 3.90 1.12 9 10�4 2.07 9 104 3.42 1.65 9 10�4

C7 2.24 9 107 2.63 9 104 1.17 9 10�3 2.44 9 10�2 6.05 9 10�1 24.83

C11 3.34 9 102 2.90 9 10�1 8.70 9 10�4 5.95 9 102 2.64 9 10�1 4.43 9 10�4

C13 8.90 9 102 3.31 3.72 9 10�3 7.82 9 102 8.09 9 10�1 1.04 9 10�3

C14 2.78 9 103 2.83 1.02 9 10�3 1.86 9 105 1.65 9 102 8.83 9 10�4

C15 1.26 9 104 1.87 9 102 1.49 9 10�2 3.73 9 104 2.19 9 101 5.88 9 10�4

C16 4.08 9 103 2.65 6.50 9 10�4 4.16 9 102 2.31 9 10�1 5.56 9 10�4

CU-CPT22 2.05 9 103 1.20 9 10�2 5.83 9 10�6 1.65 9 103 8.15 9 10�6 4.93 9 10�9
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compound C13 is a derivative of urea, substituted by

thiophene and morpholine rings (Fig. 12). The two-

dimensional structures of the compounds other than

C11 and C13 that were included in the experiments

are shown in Fig. 13.

The primary event for TLR2-mediated proinflamma-

tory responses is pathogen recognition by ECDs of the

TLR2 subfamily. Hence, discovering molecules that

may prevent TLR2 activators from binding with ECDs

of TLR2 may hinder the dimerization of ECDs. Subse-

quently, dimerization of the TIR domains will be

obstructed, and thus TLR2 cannot employ MyD88 to

initiate the TLR2 signaling pathway. Consequently,

after screening, we used molecular docking and bind-

ing free energy calculations to select 16 molecules that

may possibly bind to the ECDs of the TLR2–TLR1

dimer. To confirm the direct binding of these 16 com-

pounds with TLR2 and TLR1 ECDs at the molecular

level, SPR analysis was performed, and C11 and C13

were among the best binders (Figs 7 and 8, and

Tables 3–7). The ProteOn GLH sensor chip (Fig. 7) is

used for general amine coupling and has a highly

extended mixed polymer layer, with a maximum bind-

ing capacity for the highest analyte response. The

capacity of this sensor chip is close to that of the CM7

from Biacore. The ProteOn GLM sensor chip (Fig. 8)

is designed for general amine coupling and has an

extended polymer matrix with an intermediate binding

capacity for a high analyte response. The capacity of

the GLM sensor chip is comparable to that of the

CM5 chip from Biacore. The differences between the

GLH and GLM sensor chips lie only in their binding

capacity. In addition, the SPR assay includes several

variable factors, such as the concentration of immobi-

lized proteins, the flow of analytes, flow rate, dissocia-

tion time, association time and the type of buffer used.

In our first experiment using the GLH chip, we immo-

bilized the proteins based on their concentration

(lg�mL�1), which does not consider the number of

molecules on the microchip. Conversely, for the second

SPR analysis using the GLM chip, we immobilized the

proteins based on molarity (140 lM). Thus, these

immobilized recombinant proteins used on the two dif-

ferent sensor chips had different molecular masses.

Fig. 7. The identified TLR2–TLR1 antagonists, and the results of SPR analysis performed on the GLH sensor chip. (A) Two-dimensional

structures of the two nonpeptide TLR2–TLR1 antagonists. (B) The binding kinetics of the compounds with TLR2, measured through SPR.

The binding signals were captured between TLR2 and different concentrations of the compounds. (C) Sensograms show the association

and dissociation of varying concentrations of the compounds with TLR2.
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Therefore, the differences in KD values obtained using

these two sensor chips might be due to differences in

the immobilized proteins. The SPR results supported

the possibility that C11 and C13 disrupt TLR2–TLR1

heterodimerization, and their molecular docking poses

suggested the same. As seen in Fig. 6A, C13 forms

strong hydrogen bonds with the backbones of Phe349

and Phe325 of TLR2. Similarly, C11 also forms strong

hydrogen bonds with the backbone of Phe325

(Fig. 6B). As discussed above, Phe349 and Phe325 of

TLR2 are important for Pam3CSK4-induced TLR2–
TLR1 heterodimerization.
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Fig. 8. The identified TLR2–TLR1 antagonists, and the results of SPR analysis performed on the GLM sensor chip. (A) Sensograms show

the association and dissociation of varying concentrations of the compounds with TLR2, TLR4-MD2 and TLR3. (B) Two-dimensional

structures of CU-CPT22, C11 and C13.

Table 6. Dose-dependent SPR analysis of C11 and C13, and the

positive control, CU-CPT22, on the GLM sensor chip. RUs of the

compounds are given.

Target Dose (lM)

RU

CU-CPT22 C11 C13

Recombinant TLR2 0 0 0 0

5 4.89 2.56 1.12

10 6.01 2.96 1.97

25 8.58 6.14 3.56

50 12.16 13.85 9.42

100 13.06 29.71 17.48

Recombinant

TLR4–MD2 complex

0 0 0 0

5 0 0 0

10 0 0 0

25 0 0 0

50 3.43 3.82 3.48

100 4.14 5.27 4.21

Recombinant TLR3 0 0 0 0

5 0 0 0

10 0 0 0

25 0 0 0

50 3.7 2.68 3.42

100 3.44 4.06 3.52

Table 7. Langmuir-kinetic analysis for TLR2. SPR binding affinities

of C11 and C13, along with the positive control, CU-CPT22, on the

GLM sensor chip. The association rate (Ka), dissociation rate (Kd)

and binding affinity constant (KD) of the compounds when tested

with TLR2 are given.

Analyte Ka (Ms�1) Kd (s�1) KD (M)

CU-CPT22 1.27 9 105 1.63 1.28 9 10�5

C11 1.53 9 102 2.31 9 10�1 1.51 9 10�3

C13 4.13 9 103 8.03 9 10�1 1.94 9 10�4
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During the Pam3CSK4-induced TLR2 activation,

one of the main proinflammatory cytokines to be

secreted is IL-8. Accordingly, we measured the level

of IL-8 inhibition by each of the 16 compounds in

HEK293-hTLR2 cells. C11 and C13 were two of the

compounds that reasonably reduced IL-8 release

(Figs 9 and 10A). As a control for HEK293-hTLR2

cells, HEK293-Null cells were also used to estimate

the Pam3CSK4-induced IL-8 secretion (Fig. 11A). As

expected, no TLR2-activated IL-8 production in

HEK293-Null cells was observed. The compounds

C11 and C13 have passed the tests for exhibiting

drug-like properties in computational screening, and

these molecules were also confirmed to be nontoxic in

MTS assay (Fig. 10B). TLR inhibitors can be TLR-

specific or species-specific. Thus, to evaluate the speci-

ficity of C11 and C13, we tested them in mouse

macrophage-like RAW 264.7 cells also with the pres-

ence of TLR2–TLR6 (FSL-1), TLR3 [Poly (I : C)]

and TLR4 (LPS) agonists (Fig. 11B). Surprisingly,

C11 and C13 effectively reduced the production of

Pam3CSK4-induced TNF-a in RAW 264.7 cells

(Fig. 11B). Moreover, C11 and C13 did not suppress

TNF-a induced by TLR4 and TLR3. C13 seems to

reduce the level of TNF-a activated by FSL-1, but

not effectively. Similarly, C11 almost did not inhibit

the TNF-a induced by FSL-1. Hence, C11 and C13

are potent TLR2–TLR1 antagonists and are active

against both human and mouse cells. At present, low

molecular mass TLR2 antagonists such as CU-

CPT22, compound 2 and compound 1 are believed to

target the ECDs of TLR2–TLR1 [42–44]. However,

to our knowledge, none of them have been clinically

approved as a drug.

The TLR2–TLR1 inhibitory activities of C11 and

C13 are comparable to the previously known molecules

(Fig. 12). Our results showed that the TNF-a reduction

in RAW 264.7 cells by 10 lM of the molecules C13,

CU-CPT22 and C11 was 56%, 73% and 48%, respec-

tively (Fig. 11B). Likewise, at 10 lM, IL-8 suppression

by the compounds C13, CU-CPT22 and C11 in

HEK293-hTLR2 cells was 47%, 52% and 33%, respec-

tively (Fig. 11A). At 15 lM, the already known TLR2–
TLR1 inhibitor compound 2 reduced only 16.46% of

TLR2–TLR1-dependent nuclear factor-jB activity [43].

However, the IC50 value of compound 2 was around

3.3 lM, when it decreased the TNF-a production in

human monocytes [43]. The other known TLR2–TLR1

antagonist, a natural product-like compound 1, inhibits

around half of the Pam3CSK4-induced TNF-a and IL-

6 secretion at 4 lM in RAW 264.7 cells [44]. As seen in

Fig. 12, the structures of C11 and C13 vary consider-

ably from those of already reported TLR2–TLR1

antagonists. C13 is a derivative of urea substituted by

thiophene and morpholine rings, and C11 has a pyra-

zole ring connected to piperazin-2-one through an

amide linkage. However, compound 1 has two indole

rings connected by an amide linkage, and compound 2

is the derivative of urea substituted with naphthol and

benzene rings, whereas CU-CPT22 is an anti-aromatic

compound with hydroxyl, carbonyl and ester func-

tional groups on the ring. Overall, this study has identi-

fied two potential TLR2 antagonists, C11 and C13,

that are required at micromolar concentrations to

effectively inhibit TLR2 signaling. These structurally

distinct nonpeptide molecules may be valuable thera-

peutics or may assist in the design of an effective drug

to treat TLR2-related inflammatory diseases.
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Materials and methods

Computational mutation scanning and

pharmacophore modeling

The 2Z7X (TLR2–TLR1–Pam3CSK4) structure was

obtained from PDB. The co-crystallized ligands, except

Pam3CSK4 and water molecules, were removed, and hydro-

gen atoms were added to the structure [45]. The module

Calculate Mutation Energy (Binding) in Accelrys DS 4.0

software (Accelrys Software Inc.) was used to assess the

effect of single-point mutations in the Pam3CSK4 binding

site of 2Z7X. Mutation energies were calculated as a total

of scaled van der Waals, electrostatic, entropic and nonpo-

lar terms. To create a receptor–ligand-based model, we

used the Receptor–ligand Pharmacophore Generation

protocol to create pharmacophore features, by targeting

the lipopeptide binding site of 2Z7X with the default

parameters. Because key residues were known from previ-

ous studies, all matching features from the resulting phar-

macophore models based on genetic function

approximations [46] were edited, and five significant fea-

tures were selected to build the receptor–ligand-based
model (Fig. 3).
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Fig. 10. Dose-dependent TLR2 inhibitory effects and cytotoxic properties of the identified TLR2–TLR1 antagonists. HEK293-hTLR2 cells

were first treated with the compounds at three different concentrations (1, 5 and 10 lM) for 1 h, and then with 50 nM of Pam3CSK4. (A)

After 24 h, culture supernatants were collected and IL-8 secretion was measured with an ELISA kit. The experiments were conducted

independently (n = 3) and are shown as mean � SD (n = 1, *P < 0.05 or **P < 0.01). (B) After 24 h, cell viability was determined by

measuring the optical density at 490 nm with CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). The percentage of cell

viability compared with control is presented in the bar graph; data are shown as the mean � SEM of independent experiments (n = 3).
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The two ligand-based pharmacophore models were cre-

ated based on the structures of three known small-molecule

TLR2 agonists [26]. The two-dimensional structures of these

small molecules were drawn with CHEMBIODRAW ULTRA (Cam-

bridgeSoft, Cambridge, MA, USA), and converted into

three-dimensional structures. The energy was minimized with

the CHARMM [47] force field using default parameters in DS

4.0. We looked for HBD, HBA and HYD features, with the

Common Feature Pharmacophore Generation protocol, and

generated ligand-based models 1 and 2 with compounds A

and B, respectively (Fig. 4). The pharmacophore models

were created with features considered extremely selective,

based on genetic function approximations.

Pharmacophore-based database search and

isolation of drug-like molecules

The Search 3D Database segment in DS 4.0 was used to

retrieve hits from our in-house virtual library, of approxi-

mately seven million commercially available molecules. A

receptor–ligand-based model and two ligand-based pharma-

cophore models were used as inputs. The hits that mapped

to at least four features for receptor–ligand-based model

and hits that mapped to all five features for the ligand-

based models were obtained through the Best Search

method, with one conformation of each ligand as output.

The resulting hits from the ligand-based models were fur-

ther ranked according to the similarity of their molecular

shape and atom types to those of the query molecule, with

the ROCS_Tanimoto-Combo scoring function [32] and

default settings. To test the drug-like properties of the

resulting 3500 hit molecules, we applied filters such as Lip-

inski [34] and Veber [35] rules, and ADMET [33] proper-

ties, with the Filter Ligands and Calculate Molecular

Properties protocols in DS 4.0.

Structure preparation and molecular docking

The TLR2–TLR1 structure, prepared for mutational bind-

ing energy calculations, was used for molecular docking,
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Fig. 11. Cytokine inhibitory effects of C11 and C13 in human and mouse cells. (A) HEK293-hTLR2 and HEK293-Null cells were pretreated

with 10 lM of CU-CPT22, C11 and C13 for 1 h, and then with 50 nM of Pam3CSK4. After 24 h, culture supernatants were collected and IL-8
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Fig. 12. Two-dimensional structures of the already reported and identified TLR2–TLR1 antagonists.

Fig. 13. Two-dimensional structures of the compounds, aside from C11 and C13, that were included in the experiments.
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and ligands were prepared with the Prepare Ligand module

in DS 4.0. The lipopeptide binding site was chosen for

docking, as shown in Fig. 3A. Duplicates were removed

from the selected 1126 hit molecules, and isomers and tau-

tomers were enumerated. The 3703 conformers were

docked into the defined binding site with CD [37] imple-

mented in DS 4.0 using the default settings, but with one

top pose per ligand. CD is a grid-based molecular docking

method that generates random ligand conformations that

are later refined through MD simulated annealing using the

CHARMM force field.

The top 100 poses for ~ 60 compounds were chosen

based on the CD interaction energy. The compounds were

redocked with AD Vina [38] implemented in YASARA STRUC-

TURE [48]. The 2Z7X structure was used after the water

molecules and ligands were removed. The entire lipopeptide

binding site was set as a grid in the receptor, and saved in

SCE format, whereas the ligands were converted into PDB

format and saved. The dock_runscreening protocol was

applied in YASARA STRUCTURE. Each ligand was given 25

docking runs; using the dock_play protocol, we retrieved

the best-docked conformation for each ligand molecule,

based on the AD affinity energy value. All images were

generated using the program DS 4.0.

MD simulations and binding free energy

calculations

MD simulations were performed using the GROMACS pro-

gram version 4.6 [49] for the selected 18 protein–ligand
docking complexes. The SwissParam online server [50] was

used to determine the CHARMM27 force field [51] for the

ligand molecules. The proteins and ligands were solvated

with the SPC216 water model, periodic boundary condi-

tions were applied in all directions, and the total charge of

the system was neutralized. The energy minimization steps

were carried out with a steepest descent and conjugate gra-

dient algorithm with a tolerance of 1000 kJ�mol�1�nm�1

(maximum of 100 runs with 0.01 nm as the energy step

size). For long-range interactions, the particle mesh Ewald

method [52] was used with a 1.2 nm cutoff, and a Fourier

spacing of 0.16 nm. The electrostatic cutoff was set to

1.0 nm, and the van der Waals cutoff was set to 1.4 nm.

The solvated and minimized systems were visualized and

inspected before further simulation steps. The bond angles

and water molecules were restrained with the LINCS and SET-

TLE algorithms [53], respectively. The Parrinello–Rahman

method was used to set the pressure (1 atm) of the system,

and the V-rescale weak coupling method was used to regu-

late the temperature (310 K). The position restraints in the

MD simulations for NVT and NPT were carried out for

100 ps, with a production run of 1 ns for each protein–
ligand complex, and a time step of 2 fs. The structural

coordinates were saved for every 2 ps, and final snapshots

of the complexes were extracted with the GROMACS analysis

tool. To quantify the thermodynamic interaction of the

complexes of TLR2–TLR1 and small molecules, we used

the MM/PBSA method [54] with the G_MMPBSA tool [55] to

compute the ligand–protein intermolecular energy without

strain entropy based on the MD structure ensemble.

Surface plasmon resonance analysis

Surface plasmon resonance experiments were performed on

a ProteOn XPR36 instrument (Bio-Rad Laboratories, Inc.,

Hercules, CA, USA) with ProteOn GLH and GLM sensor

chips. Phosphate-buffered saline supplemented with 0.1%

Tween 20 (PBST containing 2% DMSO) was used as

running buffer, and 10 mM HCl or PBST 0.1% for regener-

ation. Human recombinant proteins TLR2, TLR1, TLR4–
MD2 complex and TLR3 (R&D systems, Minneapolis,

MN, USA) were immobilized by amine coupling onto sur-

faces of a GLH or/and GLM sensor chips. We immobilized

140 lM of recombinant TLR2, TLR1, TLR4–MD2 com-

plex and TLR3 proteins on a GLM sensor chip. On a Pro-

teOn GLH or GLM sensor chip, up to six proteins can be

immobilized at a time in separate regions. In our study, all

the recombinant proteins were immobilized on one sensor

chip at the same time. Varying concentrations of the mole-

cules were injected into the chip, to check their binding

with the immobilized proteins. Running buffer was injected

into the empty channel as a reference. On the ProteOn

GLH sensor chip, the dissociation was monitored for

5 min, and the chip was regenerated for the second round.

The experiments were performed in duplicate using freshly

prepared reagents. The ProteOn manager software (version

2.0) was used to analyze the data. The binding curves were

processed for the starting injection alignment and for the

baseline. A reference-subtracted sensogram was fitted glob-

ally to the curves describing a homogeneous 1: 1 Langmuir

bimolecular reaction model. The data from the four protein

surfaces were grouped together to fit the kinetic rate con-

stants (Ka and Kd). The binding constant, KD, was calcu-

lated using the following equation: KD = Kd/Ka. We

performed the SPR experiments for C11 and C13 on a Pro-

teOn GLH sensor chip and the concentrations were

100 lM, 200 lM, and varying concentrations (0, 50, 100,

200 and 400 lM). For C11 and C13 on the ProteOn GLM

sensor chip, the concentrations were 0, 5, 10, 25, 50 and

100 lM. The conditions followed when using the GLM sen-

sor chip were 100 lL injection volume, 100 lL�min�1 flow

rate, 200-s dissociation, 20-s flow stabilization and 60-s

duration.

Cell culture and treatments

HEK293-hTLR2, HEK293-Null (Invivogen, San Diego,

CA, USA) and RAW 264.7 (Korean Cell Line Bank, Seoul,

Korea) cell lines were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) with low glucose, and DMEM
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growth medium containing 10% fetal bovine serum and

1% penicillin/streptomycin (Thermo Fisher Scientific, Wal-

tham, MA, USA), respectively. Cells were incubated at

37 °C in an atmosphere of 5% CO2 (Thermo Fisher Scien-

tific). The compounds were dissolved in dimethyl sulfoxide

(Sigma-Aldrich, St Louis, MO, USA) in brown tubes and

stored at a concentration of 10 mM.

IL-8 and TNF-a secretion assays

The concentrations of IL-8 and TNF-a in the super-

natants of the culture media were determined using com-

mercially available ELISA kits (eBioscience, San Diego,

CA, USA). First, HEK293-hTLR2, HEK293-Null and

RAW 264.7 cells were dispensed into 96-well plates, and

treated with control CU-CPT22 (10 lM) and the com-

pounds (1, 5 and 10 lM) for 1 h, and then were stimulated

with Pam3CSK4 (50 nM), FSL-1 (100 ng�mL�1), Poly

(I : C) (10 lg�mL�1) and LPS (100 ng�mL�1) for 24 h.

Cell culture supernatants were collected and added to an

antibody-coated microplate, to capture human IL-8 and

mouse TNF-a. The plates were then maintained at room

temperature for 2 h. Next, the plates were washed five

times, a biotin-conjugated detecting antibody was added

to each well, and the plates were further incubated at

room temperature for 1 h. After incubation, the plates

were washed five times and incubated with avidin–horse-
radish peroxidase for 30 min. Finally, detection was car-

ried out with 3,30,5,50-tetramethylbenzidine solution, by

measuring absorbance at 450 nm with an ELISA reader,

and analyzed using SOFTMAX PRO 5.3 software (Molecular

Devices, Sunnyvale, CA, USA).

Cell viability assay

The CellTiter 96 AQueous One Solution Cell Proliferation

Assay (MTS; Promega Corp., Madison, WI, USA) was

used to determine cell viability. HEK293-hTLR2 cells were

seeded into 96-well plates (BD Biosciences, San Diego, CA,

USA), grown overnight, and treated with 50 nM Pam3CSK4

(Invivogen), 10 lM CU-CPT22 (Tocris, Bristol, UK), and

the 16 compounds (at 1, 5 and 10 lM) for 24 h. Next, the

treated and untreated HEK293-hTLR2 cells were incubated

with the MTS solution (10 lL per well) for 3 h in a humid-

ified atmosphere containing 5% CO2 at 37 °C. Then, cell

viability was measured using a microplate spectrophotome-

ter system (Molecular Devices) at a wavelength of 490 nm.

Statistical analysis

The statistical analyses were performed by one-way

ANOVA using SIGMAPLOT software, version 12.0 (Systat

Software Inc., San Jose, CA, USA). For multiple compar-

isons, Turkey’s test was applied. All experiments were

repeated independently at least three times. Statistical

significance was defined as a P-value of *P < 0.05 and

**P < 0.01.
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